219 lines
9.3 KiB
JavaScript
219 lines
9.3 KiB
JavaScript
module.exports = function(hljs) {
|
|
// variable names cannot conflict with block identifiers
|
|
var BLOCKS = [
|
|
'functions',
|
|
'model',
|
|
'data',
|
|
'parameters',
|
|
'quantities',
|
|
'transformed',
|
|
'generated'
|
|
];
|
|
var STATEMENTS = [
|
|
'for',
|
|
'in',
|
|
'if',
|
|
'else',
|
|
'while',
|
|
'break',
|
|
'continue',
|
|
'return'
|
|
];
|
|
var SPECIAL_FUNCTIONS = [
|
|
'print',
|
|
'reject',
|
|
'increment_log_prob|10',
|
|
'integrate_ode|10',
|
|
'integrate_ode_rk45|10',
|
|
'integrate_ode_bdf|10',
|
|
'algebra_solver'
|
|
];
|
|
var VAR_TYPES = [
|
|
'int',
|
|
'real',
|
|
'vector',
|
|
'ordered',
|
|
'positive_ordered',
|
|
'simplex',
|
|
'unit_vector',
|
|
'row_vector',
|
|
'matrix',
|
|
'cholesky_factor_corr|10',
|
|
'cholesky_factor_cov|10',
|
|
'corr_matrix|10',
|
|
'cov_matrix|10',
|
|
'void'
|
|
];
|
|
var FUNCTIONS = [
|
|
'Phi', 'Phi_approx', 'abs', 'acos', 'acosh', 'algebra_solver', 'append_array',
|
|
'append_col', 'append_row', 'asin', 'asinh', 'atan', 'atan2', 'atanh',
|
|
'bernoulli_cdf', 'bernoulli_lccdf', 'bernoulli_lcdf', 'bernoulli_logit_lpmf',
|
|
'bernoulli_logit_rng', 'bernoulli_lpmf', 'bernoulli_rng', 'bessel_first_kind',
|
|
'bessel_second_kind', 'beta_binomial_cdf', 'beta_binomial_lccdf',
|
|
'beta_binomial_lcdf', 'beta_binomial_lpmf', 'beta_binomial_rng', 'beta_cdf',
|
|
'beta_lccdf', 'beta_lcdf', 'beta_lpdf', 'beta_rng', 'binary_log_loss',
|
|
'binomial_cdf', 'binomial_coefficient_log', 'binomial_lccdf', 'binomial_lcdf',
|
|
'binomial_logit_lpmf', 'binomial_lpmf', 'binomial_rng', 'block',
|
|
'categorical_logit_lpmf', 'categorical_logit_rng', 'categorical_lpmf',
|
|
'categorical_rng', 'cauchy_cdf', 'cauchy_lccdf', 'cauchy_lcdf', 'cauchy_lpdf',
|
|
'cauchy_rng', 'cbrt', 'ceil', 'chi_square_cdf', 'chi_square_lccdf',
|
|
'chi_square_lcdf', 'chi_square_lpdf', 'chi_square_rng', 'cholesky_decompose',
|
|
'choose', 'col', 'cols', 'columns_dot_product', 'columns_dot_self', 'cos',
|
|
'cosh', 'cov_exp_quad', 'crossprod', 'csr_extract_u', 'csr_extract_v',
|
|
'csr_extract_w', 'csr_matrix_times_vector', 'csr_to_dense_matrix',
|
|
'cumulative_sum', 'determinant', 'diag_matrix', 'diag_post_multiply',
|
|
'diag_pre_multiply', 'diagonal', 'digamma', 'dims', 'dirichlet_lpdf',
|
|
'dirichlet_rng', 'distance', 'dot_product', 'dot_self',
|
|
'double_exponential_cdf', 'double_exponential_lccdf', 'double_exponential_lcdf',
|
|
'double_exponential_lpdf', 'double_exponential_rng', 'e', 'eigenvalues_sym',
|
|
'eigenvectors_sym', 'erf', 'erfc', 'exp', 'exp2', 'exp_mod_normal_cdf',
|
|
'exp_mod_normal_lccdf', 'exp_mod_normal_lcdf', 'exp_mod_normal_lpdf',
|
|
'exp_mod_normal_rng', 'expm1', 'exponential_cdf', 'exponential_lccdf',
|
|
'exponential_lcdf', 'exponential_lpdf', 'exponential_rng', 'fabs',
|
|
'falling_factorial', 'fdim', 'floor', 'fma', 'fmax', 'fmin', 'fmod',
|
|
'frechet_cdf', 'frechet_lccdf', 'frechet_lcdf', 'frechet_lpdf', 'frechet_rng',
|
|
'gamma_cdf', 'gamma_lccdf', 'gamma_lcdf', 'gamma_lpdf', 'gamma_p', 'gamma_q',
|
|
'gamma_rng', 'gaussian_dlm_obs_lpdf', 'get_lp', 'gumbel_cdf', 'gumbel_lccdf',
|
|
'gumbel_lcdf', 'gumbel_lpdf', 'gumbel_rng', 'head', 'hypergeometric_lpmf',
|
|
'hypergeometric_rng', 'hypot', 'inc_beta', 'int_step', 'integrate_ode',
|
|
'integrate_ode_bdf', 'integrate_ode_rk45', 'inv', 'inv_Phi',
|
|
'inv_chi_square_cdf', 'inv_chi_square_lccdf', 'inv_chi_square_lcdf',
|
|
'inv_chi_square_lpdf', 'inv_chi_square_rng', 'inv_cloglog', 'inv_gamma_cdf',
|
|
'inv_gamma_lccdf', 'inv_gamma_lcdf', 'inv_gamma_lpdf', 'inv_gamma_rng',
|
|
'inv_logit', 'inv_sqrt', 'inv_square', 'inv_wishart_lpdf', 'inv_wishart_rng',
|
|
'inverse', 'inverse_spd', 'is_inf', 'is_nan', 'lbeta', 'lchoose', 'lgamma',
|
|
'lkj_corr_cholesky_lpdf', 'lkj_corr_cholesky_rng', 'lkj_corr_lpdf',
|
|
'lkj_corr_rng', 'lmgamma', 'lmultiply', 'log', 'log10', 'log1m', 'log1m_exp',
|
|
'log1m_inv_logit', 'log1p', 'log1p_exp', 'log2', 'log_determinant',
|
|
'log_diff_exp', 'log_falling_factorial', 'log_inv_logit', 'log_mix',
|
|
'log_rising_factorial', 'log_softmax', 'log_sum_exp', 'logistic_cdf',
|
|
'logistic_lccdf', 'logistic_lcdf', 'logistic_lpdf', 'logistic_rng', 'logit',
|
|
'lognormal_cdf', 'lognormal_lccdf', 'lognormal_lcdf', 'lognormal_lpdf',
|
|
'lognormal_rng', 'machine_precision', 'matrix_exp', 'max', 'mdivide_left_spd',
|
|
'mdivide_left_tri_low', 'mdivide_right_spd', 'mdivide_right_tri_low', 'mean',
|
|
'min', 'modified_bessel_first_kind', 'modified_bessel_second_kind',
|
|
'multi_gp_cholesky_lpdf', 'multi_gp_lpdf', 'multi_normal_cholesky_lpdf',
|
|
'multi_normal_cholesky_rng', 'multi_normal_lpdf', 'multi_normal_prec_lpdf',
|
|
'multi_normal_rng', 'multi_student_t_lpdf', 'multi_student_t_rng',
|
|
'multinomial_lpmf', 'multinomial_rng', 'multiply_log',
|
|
'multiply_lower_tri_self_transpose', 'neg_binomial_2_cdf',
|
|
'neg_binomial_2_lccdf', 'neg_binomial_2_lcdf', 'neg_binomial_2_log_lpmf',
|
|
'neg_binomial_2_log_rng', 'neg_binomial_2_lpmf', 'neg_binomial_2_rng',
|
|
'neg_binomial_cdf', 'neg_binomial_lccdf', 'neg_binomial_lcdf',
|
|
'neg_binomial_lpmf', 'neg_binomial_rng', 'negative_infinity', 'normal_cdf',
|
|
'normal_lccdf', 'normal_lcdf', 'normal_lpdf', 'normal_rng', 'not_a_number',
|
|
'num_elements', 'ordered_logistic_lpmf', 'ordered_logistic_rng', 'owens_t',
|
|
'pareto_cdf', 'pareto_lccdf', 'pareto_lcdf', 'pareto_lpdf', 'pareto_rng',
|
|
'pareto_type_2_cdf', 'pareto_type_2_lccdf', 'pareto_type_2_lcdf',
|
|
'pareto_type_2_lpdf', 'pareto_type_2_rng', 'pi', 'poisson_cdf', 'poisson_lccdf',
|
|
'poisson_lcdf', 'poisson_log_lpmf', 'poisson_log_rng', 'poisson_lpmf',
|
|
'poisson_rng', 'positive_infinity', 'pow', 'print', 'prod', 'qr_Q', 'qr_R',
|
|
'quad_form', 'quad_form_diag', 'quad_form_sym', 'rank', 'rayleigh_cdf',
|
|
'rayleigh_lccdf', 'rayleigh_lcdf', 'rayleigh_lpdf', 'rayleigh_rng', 'reject',
|
|
'rep_array', 'rep_matrix', 'rep_row_vector', 'rep_vector', 'rising_factorial',
|
|
'round', 'row', 'rows', 'rows_dot_product', 'rows_dot_self',
|
|
'scaled_inv_chi_square_cdf', 'scaled_inv_chi_square_lccdf',
|
|
'scaled_inv_chi_square_lcdf', 'scaled_inv_chi_square_lpdf',
|
|
'scaled_inv_chi_square_rng', 'sd', 'segment', 'sin', 'singular_values', 'sinh',
|
|
'size', 'skew_normal_cdf', 'skew_normal_lccdf', 'skew_normal_lcdf',
|
|
'skew_normal_lpdf', 'skew_normal_rng', 'softmax', 'sort_asc', 'sort_desc',
|
|
'sort_indices_asc', 'sort_indices_desc', 'sqrt', 'sqrt2', 'square',
|
|
'squared_distance', 'step', 'student_t_cdf', 'student_t_lccdf',
|
|
'student_t_lcdf', 'student_t_lpdf', 'student_t_rng', 'sub_col', 'sub_row',
|
|
'sum', 'tail', 'tan', 'tanh', 'target', 'tcrossprod', 'tgamma', 'to_array_1d',
|
|
'to_array_2d', 'to_matrix', 'to_row_vector', 'to_vector', 'trace',
|
|
'trace_gen_quad_form', 'trace_quad_form', 'trigamma', 'trunc', 'uniform_cdf',
|
|
'uniform_lccdf', 'uniform_lcdf', 'uniform_lpdf', 'uniform_rng', 'variance',
|
|
'von_mises_lpdf', 'von_mises_rng', 'weibull_cdf', 'weibull_lccdf',
|
|
'weibull_lcdf', 'weibull_lpdf', 'weibull_rng', 'wiener_lpdf', 'wishart_lpdf',
|
|
'wishart_rng'
|
|
];
|
|
var DISTRIBUTIONS = [
|
|
'bernoulli', 'bernoulli_logit', 'beta', 'beta_binomial', 'binomial',
|
|
'binomial_logit', 'categorical', 'categorical_logit', 'cauchy', 'chi_square',
|
|
'dirichlet', 'double_exponential', 'exp_mod_normal', 'exponential', 'frechet',
|
|
'gamma', 'gaussian_dlm_obs', 'gumbel', 'hypergeometric', 'inv_chi_square',
|
|
'inv_gamma', 'inv_wishart', 'lkj_corr', 'lkj_corr_cholesky', 'logistic',
|
|
'lognormal', 'multi_gp', 'multi_gp_cholesky', 'multi_normal',
|
|
'multi_normal_cholesky', 'multi_normal_prec', 'multi_student_t', 'multinomial',
|
|
'neg_binomial', 'neg_binomial_2', 'neg_binomial_2_log', 'normal',
|
|
'ordered_logistic', 'pareto', 'pareto_type_2', 'poisson', 'poisson_log',
|
|
'rayleigh', 'scaled_inv_chi_square', 'skew_normal', 'student_t', 'uniform',
|
|
'von_mises', 'weibull', 'wiener', 'wishart'
|
|
];
|
|
|
|
return {
|
|
aliases: ['stanfuncs'],
|
|
keywords: {
|
|
'title': BLOCKS.join(' '),
|
|
'keyword': STATEMENTS.concat(VAR_TYPES).concat(SPECIAL_FUNCTIONS).join(' '),
|
|
'built_in': FUNCTIONS.join(' ')
|
|
},
|
|
lexemes: hljs.IDENT_RE,
|
|
contains: [
|
|
hljs.C_LINE_COMMENT_MODE,
|
|
hljs.COMMENT(
|
|
/#/,
|
|
/$/,
|
|
{
|
|
relevance: 0,
|
|
keywords: {
|
|
'meta-keyword': 'include'
|
|
}
|
|
}
|
|
),
|
|
hljs.COMMENT(
|
|
/\/\*/,
|
|
/\*\//,
|
|
{
|
|
relevance: 0,
|
|
// highlight doc strings mentioned in Stan reference
|
|
contains: [
|
|
{
|
|
className: 'doctag',
|
|
begin: /@(return|param)/
|
|
}
|
|
]
|
|
}
|
|
),
|
|
{
|
|
// hack: in range constraints, lower must follow "<"
|
|
begin: /<\s*lower\s*=/,
|
|
keywords: 'lower'
|
|
},
|
|
{
|
|
// hack: in range constraints, upper must follow either , or <
|
|
// <lower = ..., upper = ...> or <upper = ...>
|
|
begin: /[<,]*upper\s*=/,
|
|
keywords: 'upper'
|
|
},
|
|
{
|
|
className: 'keyword',
|
|
begin: /\btarget\s*\+=/,
|
|
relevance: 10
|
|
},
|
|
{
|
|
begin: '~\\s*(' + hljs.IDENT_RE + ')\\s*\\(',
|
|
keywords: DISTRIBUTIONS.join(' ')
|
|
},
|
|
{
|
|
className: 'number',
|
|
variants: [
|
|
{
|
|
begin: /\b\d+(?:\.\d*)?(?:[eE][+-]?\d+)?/
|
|
},
|
|
{
|
|
begin: /\.\d+(?:[eE][+-]?\d+)?\b/
|
|
}
|
|
],
|
|
relevance: 0
|
|
},
|
|
{
|
|
className: 'string',
|
|
begin: '"',
|
|
end: '"',
|
|
relevance: 0
|
|
}
|
|
]
|
|
}
|
|
}; |